Gate Breakdown Voltage Technology for GaN Devices

Optimized for power supply circuits in industrial and communication equipment.

27 May21 Gan Hemt Pr Image
Rohm

Rohm Semiconductor today announced it has developed the industry’s highest (8V) gate breakdown voltage (rated gate-source voltage) technology for 150V GaN HEMT devices – optimized for power supply circuits in industrial and communication equipment.

In recent years, due to the rising demand for server systems in response to the growing number of IoT devices, improving power conversion efficiency and reducing size have become important social issues that require further advancements in the power device sector.

Along with mass-producing industry-leading SiC devices and a variety of feature-rich silicon devices, ROHM has developed GaN devices featuring superior high-frequency operation in the medium-voltage range. Cultivating technology that increases the rated gate-source voltage allows ROHM to propose a wider range of power solutions for a variety of applications.

As GaN devices provide improved switching characteristics and lower ON resistance than silicon devices, they are expected to contribute to lower power consumption and greater miniaturization of switching power supplies used in base stations and data centers. However, drawbacks that include low rated gate-source voltage and overshoot voltage exceeding the maximum rating during switching pose major challenges to device reliability.

In response, ROHM succeeded in raising the rated gate-source voltage from the typical 6V to 8V using an original structure. This makes it possible to both improve the design margin and increase the reliability of power supply circuits using GaN devices that require high efficiency. In addition to maximizing device performance with low parasitic inductance, ROHM is also developing a dedicated package that facilitates mounting and delivers excellent heat dissipation, enabling easy replacement of existing silicon devices while simplifying handling during the mounting process.

For more, visit https://www.rohm.com/documents/11303/9146092/GaN-HEMT-PR-presentation.pdf.

More in Electronic Components