Improving Self-Driving Safety Through Sound

A functional safety sensing platform based on 3D ultrasound.

Industrial Media Staff
Autonomous self-driving mode vehicle on metro city road IoT concept with graphic sensor radar signal system and internet sensor connect.
Autonomous self-driving mode vehicle on metro city road IoT concept with graphic sensor radar signal system and internet sensor connect.
iStock

Calyo, Benedex Robotics and Cranfield University have joined forces to improve safety in self-driving vehicles.

The new partnership, part of the DRIVEN BY SOUND project led by Calyo, will develop a functional safety sensing platform based on 3D ultrasound, capable of operating effectively in even the most challenging environmental conditions.

The new technology allows autonomous vehicles to detect their surroundings in 3D in real time. It complements existing sensing and safety detection systems, providing an additional layer of safety and reliability.

The platform will be available to Tier 1 companies, automotive manufacturers, and start-up mobility ventures as a reliable and functional safety module. It serves as a crucial redundancy mechanism, enabling vehicles to perform minimum risk maneuvers (MRMs) and safely stop in the event of a fault or severe road conditions.

The collaboration combines Calyo's 3D ultrasound sensor technology, Calyo PulseTM, Benedex’s safety platform expertise, and Cranfield University’s experience in integrating and testing autonomous road vehicles. The end product will provide a crucial redundancy mechanism for enhanced safety in autonomous vehicles.

The project is expected to be completed in the first half of 2025, culminating in the demonstration of a vehicle prototype equipped with this technology at Cranfield University’s Multi User Environment for Autonomous Vehicle Innovation (MUEAVI) proving ground.

More in Automotive